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CONVERGENCE, STABILITY AND DATA DEPENDENCE FOR FIXED

POINTS OF GENERALIZED NONEXPANSIVE MAPPINGS WITH

APPLICATIONS
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Abstract. In this paper, we construct the convergence and stability of iterative algorithms

for fixed points under a weaker condition of the generalized nonexpansive mappings in Banach

spaces. Some new data dependence theorems are also presented. Finally, our results are applied

to consider the existence, uniqueness and approximation of solutions for a class of nonlinear

fractional differential equations.
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1. Introduction

Let K be a nonempty, closed and convex subset of a Banach space X, and T : K → K is a

self mapping. Fix(T ) = {x ∈ K : Tx = x} is the fixed point set of T . The mapping T is called

contractive if there exists a real number k ∈ [0, 1) such that

∥Tx− Ty∥ ≤ k∥x− y∥ (1)

for all x, y ∈ K. If k = 1 in (1), then T is said to be nonexpansive. The mapping T is called

generalized nonexpansive if there exist five real numbers a, b, c, d, e ∈ [0, 1] such that

∥Tx− Ty∥ ≤ a∥x− y∥+ b∥x− Tx∥+ c∥y − Ty∥+ d∥x− Ty∥+ e∥y − Tx∥ (2)

for all x, y ∈ K.

Remark 1.1. (i) Let b = c = d = e = 0 and a < 1 in (2), then T is a contractive mapping.

(ii) Let b = c = d = e = 0 and a = 1 in (2), then T is a nonexpansive mapping.

The Banach contraction theorem tells us that any contractive mapping has a unique fixed

point and the Picard iterative algorithm [17] converges to the fixed point. However, Picard

iterative algorithm often fails to converge to fixed points of nonexpansive mappings. So, many

authors constructed various iterative algorithms to weakly or strongly converge to fixed points

of nonexpansive mappings, for example, the Mann algorithm [15], the Ishikawa algorithm [9],
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the Noor algorithm [23] and etc. Independent of these algorithms, in [1] introduced a two-step

iterative algorithm: 
x0 ∈ K,

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)xn + βnTxn

(3)

for all n ≥ 0, where {αn}, {βn} ⊂ (0, 1, ) the authors proved that the iterative algorithm

(3) converges faster than many other algorithms to fixed points of nonexpansive mappings.

Furthermore, in [19] designed a three-step iterative algorithm:
x0 ∈ K,

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)zn + βnTzn,

zn = (1− γn)xn + γnTxn

(4)

for all n ≥ 0, where {αn}, {βn}, {γn} ⊂ (0, 1). Under some conditions on coefficients {αn},
{βn} and {γn}, they showed that the iterative algorithm (4) converges better than the iterative

algorithm (3) to fixed points of contractive mappings.

In 1973, in [8] proved that if

a+ b+ c+ d+ e < 1, (5)

then the Picard iterative algorithm converges to a unique fixed point of generalized nonexpan-

sive mappings in complete metric spaces. And then, in [21, 22] used the Krasnoselskii iterative

algorithm [11] to approximate the common fixed point of a pair of generalized nonexpansive

mappings in complete convex metric spaces and uniformly convex metric spaces. In [12] inves-

tigated the convergence of the iterative algorithm (4) for generalized nonexpansive mappings

with

a+ 2b+ c+ 2d+ 3e < 1 (6)

and some conditions on {αn} and {βn}. Inspired by [6, 12], in [14] studied the stability and

data dependence of the iterative algorithm (4) for contractive mappings in Banach spaces with

some conditions on {αn}, {βn} and {γn}. Very recently, without any condition on {αn}, {βn}
and {γn}, in [7] reproduced the results in [12, 14], they gave some convergence theorems of the

iterative algorithm (4) for contractive mappings and the iterative algorithm (3) for generalized

nonexpansive mappings with the condition (6), respectively. Meanwhile they discussed the

stability of the iterative algorithm (4) for contractive mappings, data dependence results of the

iterative algorithm (4) for contractive mappings, and the iterative algorithm (3) for generalized

nonexpansive mappings with

a+ 2b+ 2c+ 3d+ 3e < 1 (7)

were also established.

The purpose of this paper is to improve many known results as the following four aspects:

(i) In Section 2, we consider convergence theorems of the iterative algorithms (3) and (4)

for generalized nonexpansive mappings with the weaker condition (5) (it is obviously that the

generalized nonexpansive mapping given in Example 3.1 satisfies the condition (5), but does not

satisfy the condition (6) or (7) ). Based on convergence theorems in Section 2, we discuss the

stability of the iterative algorithms (3) and (4) for generalized nonexpansive mappings without

any condition on {αn}, {βn} and {γn}.
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(ii) In Section 3, we study data dependence results of the iterative algorithms (3) and (4) for

generalized nonexpansive mappings, which give some much better upper bound estimates.

(iii) In Section 4, based on the theorems in Section 2 and Section 3, we discuss the existence

and uniqueness of solutions for a class of nonlinear fractional differential equations. Meanwhile,

we use the iterative algorithm (4) to approximate a unique solution.

Next, we recall some concepts and results.

Definition 1.1. [5] Let T : X → X be a self mapping. For arbitrary x0 ∈ X, the sequence {xn}
is produced by

xn+1 = f(T, xn) (8)

for all n ≥ 0. Assume that {xn} converges to a fixed point p of T . For any sequence {yn} ⊂ X

and set

ϵn = d(yn+1, f(T, yn))

for all n ≥ 0. We say that the iterative algorithm (8) is T−stable (or stable with respect to T )

if and only if

lim
n→∞

ϵn = 0 if and only if lim
n→∞

yn = p.

Definition 1.2. [5] Let T, T̃ : K → K be two self mappings. Then T̃ is called an approximate

operator of T if there exists an ϵ > 0 such that

∥Tx− T̃ x∥ ≤ ϵ.

Lemma 1.1. [5] Suppose {an} and {bn} are two nonnegative real sequences satisfying

an+1 ≤ δan + bn, n ≥ 0,

where δ ∈ [0, 1] and lim
n→∞

bn = 0. Then lim
n→∞

an = 0.

2. Convergence and stablility results

In this section, we will establish the convergence and stability of the iterative algorithms (3)

and (4) for generalized nonexpansive mappings.

Theorem 2.1. Suppose T : K → K is a generalized nonexpansive mapping with the condition

(5). Then the sequence {xn} defined by the iterative algorithm (4) converges to the unique fixed

point p of T .

Proof. From Theorem 1 in [8], we know that T has a unique fixed point p and for any y, x ∈ K,

∥Ty − Tx∥ ≤ a∥y − x∥+ b∥y − Ty∥+ c∥x− Tx∥+ d∥y − Tx∥+ e∥x− Ty∥.

Combining formula (2), we know that

∥Tx− Ty∥ ≤ a∥x− y∥+ b+ c

2
[∥x− Tx∥+ ∥y − Ty∥] + d+ e

2
[∥x− Ty∥+ ∥y − Tx∥] .

Therefore,

∥Tx− p∥ = ∥Tx− Tp∥

≤ a∥x− p∥+ b+ c

2
[∥x− Tx∥+ ∥p− Tp∥] + d+ e

2
[∥x− Tp∥+ ∥p− Tx∥]

≤ a∥x− p∥+ b+ c

2
[∥x− p∥+ ∥p− Tx∥] + d+ e

2
[∥x− p∥+ ∥p− Tx∥] ,
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which implies

∥Tx− p∥ ≤
a+ b+c

2 + d+e
2

1− b+c
2 − d+e

2

∥x− p∥ = θ∥x− p∥,

where θ = 2a+b+c+d+e
2−b−c−d−e . It follows from the condition (5) that θ ∈ [0, 1). By the iterative

algorithm (4), we have

∥zn−p∥ = ∥(1−γn)xn+γnTxn−p∥ ≤ (1−γn)∥xn−p∥+γnθ∥xn−p∥ ≤ [1− γn(1− θ)] ∥xn−p∥
(9)

and

∥yn − p∥ = ∥(1− βn)zn + βnTzn − p∥ ≤ [1− βn(1− θ)] ∥zn − p∥. (10)

Inserting (9) into (10), we obtain

∥yn − p∥ ≤ [1− βn(1− θ)] · [1− γn(1− θ)] ∥xn − p∥. (11)

By (4) and (11), we get

∥xn+1 − p∥ = ∥(1− αn)Txn + αnTyn − p∥
≤ (1− αn)θ∥xn − p∥+ αnθ∥yn − p∥
≤ θ {1− αn + αn [1− βn(1− θ)] · [1− γn(1− θ)]} ∥xn − p∥

≤ θ
[
1− αnγn(1− θ)− αnβn(1− θ) + αnβnγn(1− θ)2

]
∥xn − p∥ (12)

≤ θ
[
1− αnβnγn(1− θ)2

]
∥xn − p∥. (13)

Notice that 1− αnβnγn(1− θ)2 < 1. Then

∥xn+1 − p∥ ≤ θ∥xn − p∥,

which implies

∥xn+1 − p∥ ≤ θn+1∥x0 − p∥. (14)

Taking limit on both sides of (14), we have

lim
n→∞

∥xn+1 − p∥ = 0, (15)

i.e. {xn} converges to the unique fixed point p of T . �

Remark 2.1. Theorem 2.1 extends some results in [8, 10-12, 21, 22], and Remark 1.1. in [7]

and Theorem 4.5. in [14] to the case of generalized nonexpansive mappings.

Corollary 2.1. Suppose T : K → K is a generalized nonexpansive mapping with the condition

(5). Then the sequence {xn} defined by the iterative algorithm (3) converges to the unique fixed

point p of T .

Proof. Let γn = 0 in (12). Then we also have

∥xn+1 − p∥ ≤ θ∥xn − p∥.

Similar to the proof of Theorem 2.1, we know that {xn} converges to the unique fixed point p

of T . �

Remark 2.2. Since we replace the condition ”a+2b+c+2d+3e < 1” by ”a+b+c+d+e < 1”,

Corollary 2.5 improves Remark 2 in [7] and Theorem 3.1 in [12].
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Example 2.1. Suppose K,X and T are defined as Example 2 in [7]. From [7], we know that T

is a generalized nonexpansive mapping with

a =
β

α(1− 2γ)
, b = e = 0, c = d =

γ

1− 2γ
.

By Theorem 2.1 and Corollary 2.1, if

a+ b+ c+ d+ e =
β

α(1− 2γ)
+

2γ

1− 2γ
< 1,

i.e.

γ <
1

4

(
1− β

α

)
,

then the iterative algorithms (3) and (4) both converge to the fixed point x∗(t) of T . In this

case, for fixed α and β, we can choose more real numbers γ and ρ than [7]. Indeed, γ must

satisfy γ < 1
5

(
1− β

α

)
in [7].

Now, we will show that the iterative algorithms (3) and (4) are both stable with respect to

generalized noneexpansive mappings with the condition (5).

Theorem 2.2. Suppose T : K → K is a generalized nonexpansive mapping with the condition

(5). Then the sequence {xn} defined by the iterative algorithm (4) is T− stable.

Proof. From Theorem 2.1, {xn} converges to the unique fixed point p. Assume that {un} is an

arbitrary sequence in K. Define
ϵn = ∥un+1 − (1− αn)Tun − αnTvn∥,
vn = (1− βn)wn + βnTwn,

wn = (1− γn)un + γnTun.

(16)

(i) Let lim
n→∞

ϵn = 0. Then we get

∥un+1 − p∥ ≤ ∥(1− αn)Tun + αnTvn − p∥+ ϵn. (17)

Similar to the proof of (13), from (16), we have

∥(1− αn)Tun + αnTvn − p∥ ≤ θ
[
1− αnβnγn(1− θ)2

]
∥un − p∥

≤ θ∥un − p∥ (18)

By (17) and (18), we obtain

∥un+1 − p∥ ≤ θ∥un − p∥+ ϵn.

It follows from Lemma 1.1 that lim
n→∞

∥un+1 − p∥ = 0, i.e. lim
n→∞

un = p.

(ii) Conversely, assume that lim
n→∞

un = p. Then

0 ≤ ϵn = ∥un+1 − (1− αn)Tun − αnTvn∥
≤ ∥un+1 − p∥+ θ∥un − p∥,

which implies lim
n→∞

ϵn = 0.

From (i), (ii), and Definition 1.1, we know that {xn} is T− stable. �

Remark 2.3. Theorem 2.2 extends Theorem 4 in [7] and Theorem 4.6 in [14] to the case of

generalized nonexpansive mappings.

Corollary 2.2. Suppose T : K → K is a generalized nonexpansive mapping with the condition

(5). Then the sequence {xn} defined by the iterative algorithm (3) is T− stable.
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Example 2.2. Let K = [0, 1] ⊂ X = R, define a mapping T : K → K by

Tx =

{
1
10x, x ∈ [0, 1/2],
1
12x, x ∈ (1/2, 1],

It is obvious that T is a generalized nonexpansive mapping with

a = 0, b = c =
2

7
, d = e =

1

7
.

So, a+ b+ c+ d+ e = 6
7 < 1. By Theorem 2.1, we know that the iterative algorithms (3) and

(4) both converge to the fixed point p = 0. From Theorem 2.5 and Corollary 2.2, the iterative

algorithms (3) and (4) are both T− stable.

In order to reflect the stability of the iterative algorithms (3) and (4) from the numerical

point of view, we set

αn = γn =

√
n+ 1

n+ 2
, βn =

1

n+ 3
, un =

1

(n+ 2)2
.

Obviously, we have {αn}, {βn}, {γn} ⊂ (0, 1) and {un} ⊂ K. Iteration results of {ϵin} (i = 1, 2)

are shown in Fig.1, where {ϵ1n} is given by the iterative algorithm (3) and {ϵ2n} is given by the

iterative algorithm (4).

Figure 1. Iteration results of {ϵin} with {un}.

Figure 1 shows that lim
n→∞

ϵin = 0 for i = 1, 2. Therefore, the iterative algorithms (3) and (4)

are both numerically stable.

3. Date dependence results

In this section, we will study the dependence of the iterative algorithms (3) and (4) for

generalized nonexpansive mappings.

Theorem 3.1. Suppose T is defined as Theorem 2.1. Let T̃ be an approximate mapping of T

with error ϵ > 0. Let {xn} be an iterative sequence defined by the iterative algorithm (4) and



C. WANG: CONVERGENCE, STABILITY AND DATA DEPENDENCE FOR ... 143

construct an iterative sequence {x̃n} as follows
x̃0 ∈ K,

x̃n+1 = (1− αn)T̃ x̃n + αnT̃ ỹn,

ỹn = (1− βn)z̃n + βnT̃ z̃n,

z̃n = (1− γn)x̃n + γnT̃ x̃n

(19)

for all n ≥ 1. If Tp = p and T̃ p̃ = p̃ such that lim
n→∞

x̃n = p̃, then

∥p− p̃∥ ≤
(
1 + 2θ

1− θ

)
ϵ,

where θ = 2a+b+c+d+e
2−b−c−d−e ∈ [0, 1).

Proof. From Theorem 2.1, lim
n→∞

xn = p. By (4), (11) and (19), we obtain

∥xn+1 − x̃n+1∥ = ∥(1− αn)Txn + αnTyn − (1− αn)T̃ x̃n − αnT̃ ỹn∥

≤ (1− αn)∥Txn − T̃ x̃n∥+ αn∥Tyn − T̃ ỹn∥
≤ (1− αn)∥Txn − T x̃n∥+ (1− αn)ϵ+ αn∥Tyn − T ỹn∥+ αnϵ

= (1− αn)∥Txn − T x̃n∥+ αn∥Tyn − T ỹn∥+ ϵ, (20)

(1− αn)∥Txn − T x̃n∥ ≤ (1− αn)∥Txn − p∥+ (1− αn)∥T x̃n − p∥
≤ (1− αn)θ∥xn − p∥+ (1− αn)θ∥x̃n − p∥
≤ (1− αn)θ∥xn − p∥+ (1− αn)θ∥x̃n − p̃∥+ (1− αn)θ∥p− p̃∥, (21)

and

αn∥Tyn − T ỹn∥ ≤ αn∥Tyn − p∥+ αn∥T ỹn − p∥
≤ αnθ∥yn − p∥+ αnθ∥ỹn − p∥
≤ αnθ [1− βn(1− θ)] · [1− γn(1− θ)] ∥yn − p∥+ αnθ · ∥ỹn − p∥ (22)

Notice that

∥ỹn − p∥ = ∥(1− βn)z̃n + βnT̃ z̃n − p∥

≤ (1− βn)∥z̃n − p∥+ βn∥T̃ z̃n − T z̃n + T z̃n − p∥
≤ (1− βn + βnθ)∥z̃n − p∥+ βnϵ

≤ (1− βn + βnθ)[(1− γn + γnθ)∥x̃n − p̃∥+ (1− γn + γnθ)∥p− p̃∥
+ γnϵ] + βnϵ

≤ (1− βn + βnθ) · (1− γn + γnθ)∥x̃n − p̃∥+ (1− βn + βnθ)

× (1− γn + γnθ) · ∥p− p̃∥+ [βn + γn(1− βn + βnθ)] · ϵ. (23)

Then, by (20)-(23), we have

∥xn+1 − x̃n+1∥ ≤ [θ − αnθ + αnθ(1− βn + βnθ) · (1− γn + γnθ)] ∥xn − p∥
+ [θ − αnθ + αnθ(1− βn + βnθ) · (1− γn + γnθ)] ∥x̃n − p̃∥
+ [θ − αnθ + αnθ(1− βn + βnθ) · (1− γn + γnθ)] ∥p− p̃∥
+ [1 + αnβnθ + αnγn(1− βn + βnθ)θ] ϵ (24)

≤ θ∥xn − p∥+ θ∥x̃n − p̃∥+ θ∥p− p̃∥+ (1 + 2θ)ϵ. (25)
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Taking limit on both sides of (25), we get

∥p− p̃∥ ≤ θ∥p− p̃∥+ (1 + 2θ)ϵ,

which implies

∥p− p̃∥ ≤
(
1 + 2θ

1− θ

)
ϵ.

�

Remark 3.1. (i) Theorem 3.1 extends Theorem 6 in [7] and Theorem 4.7 in [14] to the case of

generalized nonexpansive mappings.

(ii) From (24), if lim
n→∞

αn = 0, then we can get

∥p− p̃∥ ≤
(

1

1− θ

)
ϵ.

Corollary 3.1. Suppose T is defined as Theorem 2.1 and T̃ is an approximate mapping of T

with error ϵ > 0. Let {xn} and {x̃n} be two iterative sequences constructed by the iterative

algorithms (3) and (19) with γn = 0. If Tp = p and T̃ p̃ = p̃ such that lim
n→∞

x̃n = p̃, then

∥p− p̃∥ ≤
(
1 + θ

1− θ

)
ϵ,

where θ = 2a+b+c+d+e
2−b−c−d−e ∈ [0, 1).

Proof. Similar to the proof of Theorem 3.1, let γn = 0 in (24), we have

∥xn+1 − x̃n+1∥ ≤ θ∥xn − p∥+ θ∥x̃n − p̃∥+ θ∥p− p̃∥+ (1 + θ)ϵ.

Taking limit on both sides of the above inequality, we obtain

∥p− p̃∥ ≤
(
1 + θ

1− θ

)
ϵ.

�

Remark 3.2. Since we replace the condition ”a+2b+2c+3d+3e < 1” by ”a+b+c+d+e < 1”,

Corollary 3.1 improves Theorem 8 in [7] and Theorem 4.1 in [12]. And Corollary 3.1 gives a

much better estimate of upper bound for ∥p− p̃∥.

Example 3.1. Suppose T and T̃ are defined as Example 4.2 in [12] with

a =
1

50
, b = d =

2

50
, c = 0, d =

3

50
.

In this case, a+ b+ c+ d+ e = 0.16 < 1. In [12], it gets the following estimate

∥x∗ − x̃∗∥ ≤ 0.75596, (26)

where x∗ is the fixed point of T , x̃∗ is the fixed point of T̃ and

∥x∗ − x̃∗∥ = 0.288347, ϵ = 0.314986.

By Corollary 3.1, we obtain another estimate

∥x∗ − x̃∗∥ ≤
1 + 2a+b+c+d+e

2−b−c−d−e

1− 2a+b+c+d+e
2−b−c−d−e

· ϵ ≈ 0.38248. (27)

which is better than the estimate (26).
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Example 3.2. Suppose T and T̃ are defined as Example 5 in [7] with

a =
3

5
, b = e = 0, c = d = 0.05.

In this case, a+ b+ c+ d+ e = 0.7 < 1. In [7], it gets the following estimate

∥x∗(t)− x̃∗(t)∥∞ ≤ 0.00386, (28)

where x∗(t) is the fixed point of T (x(t)), x̃∗(t) is the fixed point of T̃ (x(t)) and

∥x∗(t)− x̃∗(t)∥∞ = 0.0009658, ϵ = 0.0005.

By Corollary 3.1, we obtain another estimate

∥x∗(t)− x̃∗(t)∥∞ ≤
1 + 2a+b+c+d+e

2−b−c−d−e

1− 2a+b+c+d+e
2−b−c−d−e

· ϵ ≈ 0.00267. (29)

which is more effective than the estimate (28).

4. Applications

Recently, many authors [2-4, 6, 13, 16, 18, 20] have used fixed point theorems and iterative

algorithms for nonlinear mappings in different spaces to study the existence, approximation,

and stability of solutions for various fractional differential equations and integral equations. In

this section, by using Theorem 2.1 and Theorem 3.1, we consider the solution of the following

nonlinear fractional differential equation [4]:

Dαx(t) +Dβx(t) = f(t, x(t)), t ∈ [0, 1], 0 < β < α < 1 (30)

with boundary value condition x(0) = x(1) = 1, where f : [0, 1] × R → R is a continuous

function, and Dρ denotes the Caputo fractional derivative of order ρ, which is defined by

Dρh(t) =
1

Γ(n− ρ)

∫ t

0
(t− s)n−ρ−1h(n)(s)ds

where h : [0,+∞) → R is a continuous function and n − 1 < ρ < n, n = [ρ] + 1. The Green

function of (30) is given by

G(t) = tα−1Eα−β(−tα−β).

Let X = C([0, 1],R) be a set of real continuous functions defined on [0, 1] with the Bielecki

norm

∥u− v∥ = maxt∈[0,1]{|u(t)− v(t)|e−λt} (31)

where u, v ∈ X and λ > 0 is a constant. In this case, (X, ∥ · ∥) is a Banach space. We know that

x(t) ∈ X is a solution of (30) is equivalent to x(t) ∈ X is a solution of the integral equation

x(t) =

∫ t

0
G(t− s)f(s, x(s)) ds (32)

for any t ∈ [0, 1]. By denoting

(Tx)(t) =

∫ t

0
G(t− s)f(s, x(s)) ds (33)

for any t ∈ [0, 1], we can write (32) as the fixed point form Tx = x.



146 TWMS J. PURE APPL. MATH., V.16, N.1, 2025

Theorem 4.1. Suppose there exist nonnegative real constants A,B,C,D and E such that

|f(t, φ1)− f(t, φ2)| ≤A|φ1 − φ2|+B|φ1 − Tφ1|+ C|φ2 − Tφ2|
+D|φ1 − Tφ2|+ E|φ2 − Tφ1| (34)

for any t ∈ [0, 1] and φ1, φ2 ∈ R, where

A+B + C +D + E < λα. (35)

Then

(i) the fractional differential equation (30) has a unique solution in X.

(ii) let x0(t) ∈ X, the iterative algorithm (4) converges uniformly to the unique solution and

(4) is T -stable.

Proof. By (33) and (34), for any φ1, φ2 ∈ X, we get

|Tφ1 − Tφ2| ≤
t∫

0

G(t− s) · |f(s, φ1(s))− f(s, φ2(s))| ds

≤
t∫

0

G(t− s) · [A|φ1 − φ2|+B|φ1 − Tφ1|+ C|φ2 − Tφ2|

≤ 1

α
· [A∥φ1 − φ2∥+B∥φ1 − Tφ1∥+ C∥φ2 − Tφ2∥

+D|φ1 − Tφ2|+ E|φ2 − Tφ1|]

≤
t∫

0

G(t− s) · [A|φ1 − φ2|e−λs +B|φ1 − Tφ1|e−λs + C|φ2 − Tφ2|e−λs

+D|φ1 − Tφ2|e−λs + E|φ2 − Tφ1|e−λs] · eλs (36)

Note that supt∈[0,1]
∫ t
0 G(t− s)ds ≤ 1

α ([4]). By (31) and (36), we have

|Tφ1 − Tφ2| ≤
1

α
· [A∥φ1 − φ2∥+B∥φ1 − Tφ1∥+ C∥φ2 − Tφ2∥+D∥φ1 − Tφ2∥

+ E∥φ2 − Tφ1∥] ·
∫ t

0
eλs ds

≤ 1

α
· [A∥φ1 − φ2∥+B∥φ1 − Tφ1∥+ C∥φ2 − Tφ2∥+D∥φ1 − Tφ2∥

+ E∥φ2 − Tφ1∥] ·
eλt

λ

which implies

∥Tφ1 − Tφ2∥ ≤ 1

λα
· [A∥φ1 − φ2∥+B∥φ1 − Tφ1∥+ C∥φ2 − Tφ2∥

+D∥φ1 − Tφ2∥+ E∥φ2 − Tφ1∥].

From the condition (35), we know that the mapping T : X → X is a generalized nonexpansive

mapping with the condition (5). It follows from Theorem 2.1 that T has a unique fixed point

x∗, i.e., the fractional differential equation (30) has a unique solution x∗ ∈ X. According to

Theorem 2.1 and Theorem 2.2, it can be inferred that the iterative algorithm (4) converges

uniformly to the solution and the algorithm is T -stable. �
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Remark 4.1. Based on the values of parameters A,B,C,D and E, we can choose an appropriate

real number λ such that

λ >
A+B + C +D + E

α
.

Corollary 4.1. Suppose f is an L-Lipschitz function with respect to the second variable, i.e.,

|f(t, φ1)− f(t, φ2)| ≤L|φ1 − φ2|

for any t ∈ [0, 1] and φ1, φ2 ∈ R, where 0 < L < λα. Then the iterative algorithm (4) converges

uniformly to a unique solution of the fractional differential equation (30) and (4) is T -stable.

5. Conclusion

The purpose of this paper is to discuss the convergence, stability and data dependence of gen-

eralized nonexpansive mappings with the condition (5). We mainly use the iterative algorithm

(4) to approximate fixed points for the mappings, and established some convergence, stability

and data dependence theorems, which are more general than other previous results. Further-

more, we have presented some numerical examples to illustrate our conclusions. Moreover, using

our fixed point theorems, we study the existence and uniqueness of solutions for a class of non-

linear fractional differential equations and provide an effective iterative algorithm to approach

a unique solution.
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